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Abstract
We revisit the minimum-variance theory proposed by Harris and Wolpert (1998
Nature 394 780–4), discuss the implications of the theory on modelling the
firing patterns of single neurons and analytically find the optimal control signals,
trajectories and velocities. Under the rate coding assumption, input control
signals employed in the minimum-variance theory should be Fitts processes
rather than Poisson processes. Only if information is coded by interspike
intervals, Poisson processes are in agreement with the inputs employed in
the minimum-variance theory. For the integrate-and-fire model with Fitts
process inputs, interspike intervals of efferent spike trains are very irregular.
We introduce diffusion approximations to approximate neural models with
renewal process inputs and present theoretical results on calculating moments
of interspike intervals of the integrate-and-fire model. Results in Feng, et al
(2002 J. Phys. A: Math. Gen. 35 7287–304) are generalized. In conclusion,
we present a complete picture on the minimum-variance theory ranging from
input control signals, to model outputs, and to its implications on modelling
firing patterns of single neurons.

PACS numbers: 87.19.La, 02.30.Yy, 02.50.Ey

1. Introduction

In [9] Harris and Wolpert proposed the minimum-variance theory, which attempts to reveal
the fundamental principles possibly underpinning the saccadic eye movements and arm
movements. Some assumptions of their model are not clear. In particular it is not clear
whether the control (input) signal is neuronal firing rates (i.e. the number of spikes emitted
by a neuron per second) or firing intervals. In [9], figure 1, the authors compared inputs in
their model with the neuronal firing rates measured from biological experiments, indicating
that the input signals are neuronal firing rates. It is further pointed out in [15] that ‘To a first
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approximation, the variance in the firing rate of a neuron is proportional to its rate; in the cortex
of the brain, the ratio of the variance to the rate is close to 1’. It seems to further conclude that
the input signals used in the minimum-variance theory are firing rates of a Poisson process.
On the other hand, in [9] all results are based upon numerical simulations. It is not easy
to assess how the model behaviour depends on various model parameters. Essentially the
minimum-variance theory is a control problem [11], but an analytical solution of the optimal
control signal in the theory is yet to be provided.

Here we aim at answering all the aforementioned questions.

• Is the input signal used in the minimum-variance theory a Poisson process, as seemingly
confirmed both in [9, 15], or some other type of stochastic processes?

• What is the implication of their modelling work on modelling firing patterns of single
neurons?

• What are the optimal control signal, trajectory and velocity?

We point out that under the rate coding assumption, the input signal used in the minimum-
variance theory is a renewal process but not a Poisson process. It is a special renewal process.
In particular, if the interspike intervals are Gamma distributed, the input process is the so-
called Fitts process (see below for an exact definition). For the Fitts process, the coefficient
of variation of the firing rate is one and is independent of its mean firing rate. For a Poisson
process, the coefficient of variation of firing rate tends to zero when the mean firing rate
tends to infinity. Only if we assume that each interspike interval is used as the input control
signal, then the input used in the minimum-variance theory is the Poisson process. This, of
course, poses a constraint on the applicability of the theory since it is traditionally accepted
that information is carried by the firing rate of an approximately Poisson process (see, for
example, [10] for experimental data, and [15]).

We then discuss the consequence of their model assumption [9] on modelling the evolution
of the membrane potential of single neurons. Single neuron models with stochastic inputs
have been extensively studied during the past decades (see, for example, [5, 16] and references
therein). Much as many informative results have been obtained on models with Poisson
process inputs, we consider neuronal models with the Fitts process inputs and find that, no
matter whether the neuron receives a purely excitatory input or a balanced excitatory and
inhibitory input, the output spike trains are very irregular, with a coefficient of variation of
interspike intervals greater than 0.5. Therefore, the control signal used in the minimum-
variance theory is more irregular than that of a Poisson process. Theoretically we describe a
way to use diffusion process inputs to approximate renewal process inputs, which then enables
us to find a rigorous result to calculate the mean interspike intervals of the integrate-and-fire
model with Fitts process or more general renewal process inputs.

The optimal control signal is analytically found in [6] for α > 1/2, the super-Poisson
case4. As an application of results in [6], we calculate the optimal trajectories and velocities
for the one-dimensional case. This paper generalizes results in [6] to the case for 0 � α < 1/2.

In summary we complete our study of the task that started at [6]: exploring the nature
of input signals, finding optimal control signals and calculating trajectories and velocities for
α > 0. As a consequence, we also investigate single neuronal activity with a renewal process
inputs. This is the first step of our efforts to integrate a neuronal activity model (input signal)
with a motor control model (control signal). With the help of advances on modelling neurons
[7], and robotic controls [12], we expect in the near future to be able to build an integrated
neuronal robot.

4 See sections 2 and 3 for the introduction of α.
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2. Minimum-variance theory models

The state-update equation in [9] is defined by

xt+1 = Axt + C(ut + wt) (1)

where xt is a vector identifying the position of the eye, A,C are appropriate matrices and ut is
the input signal, wt is noise satisfying 〈wt 〉 = 0 and

〈
w2

t

〉 = u2α
t (see [9] where only α = 1 is

considered). For simplicity of notation we rewrite equation (1) above in the continuous time
form

dxt = (A − I )xt dt + C
(
ut dt + uα

t dBt

)
(2)

where Bt is the standard Brownian motion. The problem solved in the minimum-variance
theory is connected with the neural control of the movement. The neural signal has a
deterministic and stochastic part. Suppose that xt is the solution of equation (2). We
intend to find a control signal ut such that the variance of xt is minimized in time interval
[S, S + R], i.e.

min
u

∫ S+R

S

var(xt ) dt

where R > 0 and

〈xS〉 = D (3)

with D being the desired position of the movement. The constraint equation (3) can be replaced
by

〈xt 〉 = D t ∈ [S, S + R] (4)

and all conclusions proved in [6] are true with slight modifications. The control problem
defined above is called post-movement control and is considered in [9]. Before analysing the
results on the control signal we want to first discuss what is the appropriate form of the input
signal and so in section 2 below we consider α = 1 first, and in section 4 we turn our attention
to finding out the optimal control signal depending on α. When α �= 1, equation (2) is no
longer a linear model.

3. Neuronal models

In this section, we investigate the control signals in the minimum-variance theory, its
implications on modelling firing patterns of single neurons and some theoretical results of
estimating the mean interspike intervals with renewal process inputs are presented.

3.1. The Integrate-and-fire model

Suppose that a cell receives excitatory postsynaptic potentials (EPSPs) at NE excitatory
synapses and inhibitory postsynaptic potentials (IPSPs) at NI inhibitory synapses. As long as
the membrane potential Zt is below the threshold Vthre, it is given by

dZt = − 1

γ
(Zt − Vrest) dt + a

NE∑
i=1

dEi(t) − b

NI∑
j=1

dIj (t) (5)

where Vrest is the resting potential, 1/γ is the decay rate, Ei(t), Ii(t) are point processes and
a, b are magnitudes of each EPSP and IPSP [5]. Once Zt crosses Vthre from below a spike is
generated and Zt is reset to Vrest. This model is termed the (leaky) integrate-and-fire model.
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For the facilitation of theoretical treatment, we further assume that NE(t) = ∑NE

i=1 Ei(t) and
NI (t) = ∑NI

j=1 Ij (t) are renewal processes. Let tEi denote the ith inter-EPSP interval, and t Ii
the ith inter-IPSP interval. As in the literature we denote{

1
/〈

t Ii
〉 = r

/〈
tEi

〉
1
/〈(

t Ii − 〈
t Ii

〉)2〉 = r
/〈(

tEi − 〈
tEi

〉)2〉
with r ∈ [0, 1], the rate ratio between inhibitory and excitatory inputs and 〈·〉 being the
expectation. Hence when r = 0 there are no inhibitory inputs and when r = 1 inhibitory and
excitatory inputs are exactly balanced.

According to a basic result for the renewal process ([3], p 372), we have

1√
t

(
NE(t) − t

/〈
tEi

〉) → Nor
(
0,

〈(
tEi − 〈

tEi
〉)2〉/(〈

tEi
〉)3)

(6)

in distribution where Nor(µ̄, σ̄ 2) represents the normal distribution with mean µ̄ and variance
σ̄ 2. Hence the process NE(t) can be approximated by5

dNE(t) = 1〈
tEi

〉 dt +

√〈(
tEi − 〈

tEi
〉)2〉

(〈
tEi

〉)3/2 dBE
t

where BE
t is the standard Brownian motion. Similarly for IPSP inputs we have

dNI (t) = r〈
tEi

〉 dt +

√
r
〈(
tEi − 〈

tEi
〉)2〉

(〈
tEi

〉)3/2 dBI
t

where BI
t is the standard Brownian motion, independent of BE

t .
From now on we assume that a = b, Vrest = 0 mV. Hence the diffusion approximation,

Vt , of the original jump (point) process Zt is given by

dVt = − 1

γ
Vt dt + dI (t) (7)

with a synaptic input dI (t) = µ dt + σ dBt , where


µ = a
1 − r〈
tEi

〉
σ 2 = a2(1 + r)

〈(
tEi − 〈

tEi
〉)2〉(〈

tEi
〉)3

(8)

and Bt is the standard Brownian motion. The interspike interval of efferent spikes (the firing
time) is

T = inf{t : Vt � Vthre}.
Therefore we arrive at the first conclusion: for the membrane potential defined by

equation (5), i.e. the integrate-and-fire model with renewal process inputs, its diffusion
approximation is given by equation (7).

Later on we want to check the accuracy of the diffusion approximation. This has been
extensively investigated for Poisson process inputs. It is, however, not clear for general renewal
process inputs. To carry out numerical simulations, we further confine ourselves to the case
that inter-EPSP and inter-IPSP are distributed according to Gamma distributions.

5 It is worth pointing out (see [8], theorem 5 in p 366) that NE(t) is Markovian if and only if NE(t) is Poissonian.
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A Gamma distribution with positive parameters (β, ν) is defined by its density

fβ,ν(t) = 1

�(ν)
βνtν−1 exp(−βt)

with mean 〈
tEi

〉 = ν/β

and variance 〈(
tEi − 〈

tEi
〉)2〉 = ν/β2

i.e. the coefficient of variation CVR(I ) of interspike interval T (defined by the standard
deviation of T divided by the mean value of T) is

CVR(I ) = 1√
ν
.

The diffusion approximation now takes the following form:

dVt = −Vt

γ
dt + a

β

ν
(1 − r) dt + a

√
1 + r

√
β

ν
dBt .

Let λ = β/ν, we then have

dVt = −Vt

γ
+ aλ(1 − r) dt + a

√
1 + r

√
λ√
ν

dBt . (9)

When ν = 1, the renewal process input is exactly a Poisson process with the coefficient
of variation (CV(R)) of firing rates, i.e. standard deviation of NE(1)/mean of NE(1) (see
equation (6) which is true provided that

〈
tEi

〉
is small enough).

CVP (R) = 1√
λ

and the CV of interspike intervals (ISIs)

CVP (I ) = 1.

3.2. Fitts process versus Poisson process (table 1)

The input of the integrate-and-fire model is identical to the input used in the minimum-variance
theory (see equation (2)) if

(√
β

ν

)2 = (
β

ν

)2
i.e. β = 1. The corresponding renewal process is

that with interspike interval density

f1,ν(t) = 1

�(ν)
tν−1 exp(−t)

with mean ν and CV of firing rates being equal to 1, and a CV of ISIs of 1/
√

ν. Equation (9)
takes the form (λ = 1/ν)

dVt = −Vt

γ
+ aλ(1 − r) dt + a

√
1 + rλ dBt . (10)

Hence the renewal process with f1,ν as its interspike interval distribution has the property
that the faster the input, the larger the variability of interspike intervals. If the CV of ISIs of
spike trains is a measurement of the variability of input signals, the renewal process with f1,ν

fits well with the empirical Fitts law: the faster the movement (the stronger the input signals),
the greater the inaccuracy of the movement (the larger the CV of input ISIs). We therefore
introduce:
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Figure 1. A comparison of the histogram of Poisson process (right) and Fitts process (left) of ISIs
with λ = 0.1, 1 and 10.

Table 1. A comparison between Poisson process and Fitts process, λ = 1/ν.

Poisson Fitts

Input rate λ λ

CV of firing rates CVp(R) = 1√
λ

CVF (R) = 1

CV of ISIs CVp(I ) = 1 CVF (I ) = √
λ

Definition 1. The renewal process with f1,ν as its interspike interval distributions is called
Fitts process.

A Fitts process is very different from a Poisson process. For the former, the faster the
neuron fires, the larger its variability. For the latter, its variability is totally independent of
firing rates. However, we see from figure 1 that when the input rate λ is large, the distribution
density fλ,1(t) is more similar to f1,ν(t) (truncated at a finite value) than that of small λ(λ < 1).
fλ,1(t) is always a monotonic function, whereas f1,ν(t) is not.

To assess the implication of Fitts process inputs on the output firing pattern of a neuronal
model such as the integrate-and-fire model, a few numerical comparisons are presented below.
As in the literature [5] we fix λ = β/ν = 10, a = b = 0.5, Vthre = 20, γ = 20 and Vrest = 0
in the following simulations.

Figure 2 shows that in general the diffusion approximation gives quite a good
approximation. An interesting phenomenon revealed by figure 2 is that the efferent spike
trains are very irregular when inputs are Fitts process, with a CV between 0.5 and 1. As we
have mentioned in previous publications [5], there are many ways to generate efferent spike
trains of the integrate-and-fire model with a CV between 0.5 and 1, a question hotly debated
in the past few years [4].

3.3. Moments of efferent interspike intervals

We first introduce some general notation. Consider a diffusion process defined by

dXt = µ(Xt) dt + σ(Xt) dBt . (11)
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Figure 2. Mean and CV of interspike intervals of the integrate-and-fire model with Poisson process
and Fitts process inputs. The points marked + and X are obtained from point process inputs and
the lines are diffusion approximations. In general the diffusion approximations give rise to good
approximations.

Let us introduce the following quantities:


s(x) = exp
(− ∫ x

0
2µ(y)

σ 2(y)
dy

)

m(x) = 1

s(x)σ 2(x)
=

exp
( ∫ x

0
2µ(z)

σ 2(z)
dz

)
σ 2(x)

(12)

where m is the speed density, s the scale function. We call a diffusion process positive
recurrent if

∫ ∞
−∞ m(x) dx < ∞, which is equivalent to 〈T 〉 < ∞, where T is the first exit time

of (−∞, Vthre]. For a positive-recurrent process, its stationary distribution density is given by
π(x) ∝ m(x).

The following conclusion can be found in [5]:

Lemma 1. For a positive-recurrent diffusion process Xt we have

〈T 〉 = 2
∫ Vthre

Vrest

s(u) du

∫ Vrest

−∞
m(u) du + 2

∫ Vthre

Vrest

(∫ Vthre

y

s(u) du

)
m(y) dy (13)

= 2
∫ Vthre

Vrest

(∫ y

−∞
m(u) du

)
s(y) dy. (14)

For the model with Fitts process inputs, we thus have

〈T 〉 = 2

L

∫ BF

AF

g(x) dx (15)

where g(x) = exp(x2)
∫ x

−∞ exp(−u2) du,

AF = Vrest

√
L

aλ
√

(1 + r)
− (1 − r)√

L(1 + r)
BF = Vthre

√
L

aλ
√

(1 + r)
− (1 − r)√

L(1 + r)

and L = 1/γ .
For Poisson process inputs we have [5]

〈T 〉 = 2

L

∫ BP

AP

g(x) dx
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with

AP = Vrest

√
L

a
√

λ(1 + r)
−

√
λ(1 − r)√
L(1 + r)

BP = Vthre

√
L

a
√

λ(1 + r)
−

√
λ(1 − r)√
L(1 + r)

.

In general we have the following conclusions.

Theorem 1. For renewal process inputs we have

〈T 〉 = 2

L

∫ VthreL−µ

σ
√

L

VrestL−µ

σ
√

L

g(x) dx

where µ and σ are given by equation (8).

To the best of our knowledge, results as in theorem 1 have not been reported in the literature.
In terms of the theorem above, and Siegert’s expression for higher moments [14], we can find
the stationary state of a network of the integrate-and-fire models, which is actually a long
standing issue in computational neuroscience (see, for example, [1]). For example, for the
second moment, we have

var(T ) = 4

L2

∫ VthreL−µ

σ
√

L

VrestL−µ

σ
√

L

exp(x2)

{∫ x

−∞
exp(−u2)g2(u) du

}
dx. (16)

We know that in general the output of the integrate-and-fire model is a renewal process, rather
than a Poisson process. For a renewal process, from equation (6), we conclude that it is
fully determined by its mean and variance of interspike intervals. Therefore, we can obtain a
two-dimensional dynamical system of mean and variance and find the stationary solution of
the following dynamical system:

(µn+1, σn+1) = F(µn, σn)

where F is determined by Siegert’s expression, i.e. equation (16) and theorem 1, (µn, σn) is the
input mean and standard deviation and (µn+1, σn+1) is the output mean and standard deviation
(see, for example, [13] for related literature).

After clarifying the issue on input signals, now let us consider the optimal control signal
and output of the model of equation (2).

4. Optimal displacement and velocity

Now it is clear which input signals are used in the theory, let us turn our attention to the control
part of the theory, i.e. to the post-movement control explained in section 2. Let us consider
the constraint on the average position

〈xS〉 = D (17)

with D being the desired position of the movement. Equation (17) can be replaced by

〈xt 〉 = D t ∈ [S, S + R] (18)

and all conclusions proved in [6] are true with slight modifications. The similar control
problem is called post-movement control and is considered in [9]. We have also proposed
another form of control: during-movement control, i.e. to minimize the variance of xt in the
time interval [S−R, S] for 0 � R � S. We have theoretically found the optimal signals u∗

t for
a given α > 1/2 for the variance defined in theorem 1 [6]. However, many related issues have
not been discussed such as the implication of different model parameters on the behaviour
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of the model, the corresponding velocity etc. Here, as an application of results developed in
[6], we first explore these issues. In [6], we are only able to analytically find out the optimal
control signal for α > 1/2. Here we generalize the results to α > 0.

4.1. Post movement

To proceed, we first cite some results [6]. The optimal control signal is (in the one-dimensional
case, and C = 1)

u∗
t =




D
S

exp[−σ̃ (S − t)] if α = 1

Dσ̃
(
1 − 1

2α−1

)
exp

[
σ̃ S

(
1 − 1

2α−1

)] − 1
exp

[− σ̃
2α−1 (S − t)

]
otherwise and α > 1/2

(19)

for t ∈ [0, S] and ut = 0 for t ∈ [S, S + R], and σ̃ = A − 1.
From equations (19) and (2), we conclude that the optimal average displacement is

〈xt 〉 =
∫ t

0
exp(σ̃ (t − s))u∗

s ds

=




D
[

exp
(

1
2α−1 σ̃ t

) − exp(σ̃ t)
]

exp
(

σ̃ S
2α−1

) − exp(σ̃ S)
if α �= 1 and α > 1/2

Dt exp(σ̃ t)

S exp(σ̃ S)
if α = 1

(20)

the average velocity is given by

〈vt 〉 =
(∫ t

0
exp(σ̃ (t − s))u∗

s ds

)′

=




D
[

σ̃
2α−1 exp

(
1

2α−1 σ̃ t
) − σ̃ exp(σ̃ t)

]
exp

(
σ̃ S

2α−1

) − exp(σ̃ S)
if α �= 1 and α > 1/2

D[exp(σ̃ t) + σ̃ t exp(σ̃ t)]

S exp(σ̃ S)
if α = 1.

(21)

From figure 3, we see that when σ̃ > 0, the trajectory 〈xt 〉 simply increases to approach
its target (D = 1). As a consequence the speed is also simply an increasing function with
respect to time. Nevertheless, when σ̃ < 0, the trajectory could exhibit the overshooting
phenomena. For example, when α = 1.4, the trajectory will first approach 1.5 and then
come back to 1. One might wonder where the overshooting comes from. Recall that for the
dynamics we consider here, the requirement is that at time S, the trajectory stops at D and
the variance is minimized. Therefore, we have not excluded the possibility of overshooting.
Hence if the variance of the trajectory of returning to D is smaller, then the optimal path is
that of overshooting and returning. The overshooting is also observable for the velocity, we
see that in some cases it is negative.

4.2. During movement

In [6] we also proposed a new approach to tackle the problem. The idea is quite straightforward:
if the purpose of a movement of a biological system is to have a smooth trajectory, then a control
during the movement, rather than a control after movement as in the previous subsection, would
be more efficient. Therefore, we ask the question what happens if we intend to have a control
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Figure 3. Mean trajectory 〈xt 〉 (upper panel) and velocity (bottom panel) versus (t, α) with
D = 1, σ̃ = ±1 and S = 1.

of trajectory variances during [S − R, S], where 0 < R � S. It turns out that when R = 0,
i.e. the whole range control, the solution of the optimal control is degenerate [6]. Hence we
confine ourselves to the case of R > 0. Again when α = 1/2 (see below) the optimal control
signal is degenerate and so we first consider the case α > 1/2.

It is proved [6] that

u∗
s = D

ã2α/(2α−1) + b̃2α/(2α−1)
ã1/(2α−1)

(
F(S − s)

U(s)

)1/(2α−1)

I[0,S−R]

+
D

ã2α/(2α−1) + b̃2α/(2α−1)
b̃1/(2α−1)

(
F(S − s)

V (s)

)1/(2α−1)

I[S−R,S] (22)

where(
F(S − s)

U(s)

)1/(2α−1)

=
[

4σ̃ 2

1 − (2σ̃R + 1) exp(−2σ̃R))

]1/(2α−1)

exp[−σ̃ (S − s)/(2α − 1)]
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and(
F(S − s)

V (s)

)1/(2α−1)

=
[

4σ̃ 2

1 − (2σ̃ s + 1) exp(−2σ̃ s)

]1/(2α−1)

exp[−σ̃ (S − s)/(2α − 1)]

with coefficients

ã =




[
4σ̃ 2

1 − (2σ̃R + 1) exp(−2σ̃R)

] 1
(2α−1)

[
exp

(
2σ̃ S(α − 1)

2α − 1

)

− exp

(
2σ̃R(α − 1)

2α − 1

)]
2α − 1

2(α − 1)σ̃
if α �= 1[

4σ̃ 2

1 − (2σ̃R + 1) exp(−2σ̃R)

]
(S − R) if α = 1

and

b̃ =




∫ S

S−R

[
4σ̃ 2

1 − (2σ̃ s + 1) exp(−2σ̃ s)

]1/(2α−1)

exp

(
2σ̃ (α − 1)(S − s)

2α − 1

)
ds if α �= 1

∫ S

S−R

[
4σ̃ 2

1 − (2σ̃ s + 1) exp(−2σ̃ s)

]
ds if α = 1.

In figure 4 we plot 〈xt 〉 versus t and d(〈xt 〉)/dt , i.e. the velocity versus t when the control
signal is u∗

t defined by equation (22). Comparing with results in the previous subsection, we
see that the overshooting is not observable for the cases we considered here.

It is interesting to see that with control, i.e. in time interval [0.5, 1], the velocity is much
more flat than the case of without control, i.e. in time interval [0, 0.5]. Furthermore, increasing
the control ranges, i.e. increasing R, will reduce the difference between trajectories for different
σ̃ , as plotted in figure 5.

Finally we point out that the velocity profiles in figures in section 4 are not symmetric
as reported in [9]. The basic reason is that we only impose the constraint equation (3) rather
than the hold-on constraint equation (18) and the model is one dimensional. With the hold-
on constraint equation (18) and in a high dimension, the symmetric velocity profiles will
automatically follow [4].

5. Optimal control signals

The optimal control signals for α > 1/2 are found in [6], here we consider the case of
0 < α � 1/2. We only consider the case of post-movement minimization (as in section 4).

Theorem 2. For α = 1/2, the optimal control signal u∗
t is unique and given by

u∗
t = c1δt (t

∗)

where t∗ is the point the function∫ S+R

S

(S + R − t)‖F(t − s)‖2 dt s ∈ [0, S]

attains its minimum, δ is the delta function, F(t) = exp((A − I )t)C (see equation (2.2)) and
c1 is a constant so that the constraint equation (6.1) is satisfied.
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Figure 4. Mean trajectory 〈xt 〉 (upper panel) and velocity (bottom panel) versus (t, α) with
D = 1, σ̃ = ±1, R = 0.5 and S = 1.

For 0 < α < 1/2, the optimal control signal u∗
t is not unique and one class of the optimal

control signal could be

u∗
t = c1δt (s)

where s ∈ [0, S].

Before proving, we want to have a comparison with results in [6]. In [6], numerical
simulations are carried out for α = 1/2 to confirm that the control signal is degenerate.
Of course, we cannot assert whether the numerically founded optimal control signal is unique
or not. Theorem 2 tells us that the solution is unique, albeit it is degenerate. In the case
of 0 < α < 1/2, it is not known and in fact numerically it is impossible to find all the
optimal control signals since from theorem 2 we know that there are infinity optimal control
signals. Results in theorem 2 analytically confirm that the minimum-variance theory is only
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Figure 5. Mean trajectory 〈xt 〉 (upper panel) and velocity (bottom panel) versus (t, α) with
D = 1, σ̃ = ±1, R = 0.9 and S = 1. The differences between two trajectories are almost
indistinguishable.

applicable for the system with a super-Poisson input (α > 1/2), and is not suitable for a
Poisson (α = 1/2) and sub-Poisson (0 < α < 1/2) input.

Proof. From the proofs of theorem 2 in [6], we know that to minimize the variance of xt in
the time interval [S, S + R] is equivalent to minimizing

I (u) = 2
∫ S

0
H(s)|us |2α ds

for u ∈ L2α[0, S] where

H(s) =
∫ S+R

S

(S + R − t)‖F(t − s)‖2 dt.

When α > 1/2 the delta function is not in the space L2α[0, S], we can find properly
defined optimal control signal u∗, as in [6]. However, when α � 1/2, we see that the delta
function is in the space L2α[0, S].

In particular when α = 1/2, we have

min
u

I (u) = min
u

2
∫ S

0
H(s)|us |2α ds

= 2
∫ S

0
H(s)|u∗

s | ds

= 2H(t∗) > 0.

The uniqueness of the optimal control signal is easily seen.
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When 0 < α < 1/2, we note that

min
u

I (u) = min
u

2
∫ S

0
H(s)|us |2α ds

= 2
∫ S

0
H(s)|u∗

s | · |u∗
s |2α−1 ds

= 0.

Since I (u) � 0, the control signals are optimal. �

6. Discussion

We considered the minimum-variance theory and discussed the implications of the theory on
modelling firing patterns of single neurons, and analytically found the optimal control signals.
It is found that the input signals used in the minimum-variance theory are Fitts processes rather
than Poisson processes. With Fitts process inputs, an integrate-and-fire model fires irregularly,
with a CV of interspike interval between 0.5 and 1 in the case we considered. In the framework
of post- and during-movement control, we also presented results of the optimal displacement
and velocity and analytically found optimal control signals for α > 0. We expect that our
results in this paper clarified the limit of the minimum-variance theory, which is currently a
widely spread theory.

One of the problems we encountered here is overshooting, as shown in the previous
section. We see that basically it is not appropriate to define a fixed time for a stochastic control
problem as discussed here. A more reasonable approach would be to introduce the first hitting
time

Sε = inf{t : xt ∈ Dε}
to replace S, where Dε = {x : d(x,D) � ε} with d as the Euclidean distance. The problem
we considered here is the open loop control problem in stochastic control theory [11]. In the
framework of the open loop control, the overshooting automatically disappears. In biologically
saccadic control, the overshooting is overcome by a mixture of agonistic and antagonistic
motoneuron inputs [2].
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